
UNIX Basics
by Peter Collinson, Hillside Systems

24 SunExpert Magazine ■ September 1998

W
EN

DY
 G

RO
SS

M
AN

Signals
OO

ne of the many aspects of Mr.
Gates’ products that niggle me
is the inability to stop something

from happening. You start an application
doing something by mistake and find
yourself pounding random keys to stop
it. Will this stop with the Escape key?
Should I hit Break? Should I use Control-
C? Should I use Control-Alt-Delete? At
least when you use the latter key chord
on Windows NT you have the ability to
kill the offending process using the Task
Manager, always hoping that the applica-
tion resources are recovered properly by
the system. Starting activities erroneously
happens all too often. The problem seems
to trouble me more these days, because
age has caused me to be marginally opti-
cally challenged and I get one-off errors
on menus with little apparent effort.

I suppose that the inability to stop
things from happening occurs on UNIX
too, but it’s much more rare and is
usually a feature of a system failure or a
badly programmed application. UNIX
was designed to allow the keyboard user

to send an emergency message to an
application and for that application to
be stopped in its tracks. Control is then
returned to the user, where it should be.
The emergency message is part of a sys-
tem of simple interprocess communica-
tions (IPC) called signals.

A UNIX system consists of a memory-
resident kernel and many processes that
do all the work. Processes are program-
med using a model where each process
exists alone, running in a virtual machine.
A process has access to an address space
and talks to the outside world via system
calls that switch into the kernel. A process
cannot directly see other processes run-
ning on the machine and cannot interfere
with the address space of other processes
unless special arrangements are made to
share memory. Processes talk to the kernel
mostly using data streams. I discussed
stream I/O concepts in my column en-
titled “Device Independence” (July 1998,
Page 28). Sending data from one process
to another doesn’t happen directly, the
data is passed into the kernel from the

sending process and is read from the ker-
nel by the receiving process.

This isolationist model has many
positive aspects. It means that if a pro-
cess fails for one reason or another, its
misbehavior cannot randomly affect
another process, possibly causing un-
expected events or strange unprovable
data corruptions. The action of each
process is deterministic, “garbage in”
will mean “garbage out,” but it will be
the same garbage every time. The safety
that the process environment supplies
is particularly important for the C lang-
uage, where errors in coding can easily
cause a program to spray data over its
address space. The process model limits
the damage.

Signals are part of that model. A sig-
nal is not actually a message. It’s a bit in a
word in the control block for the process
that’s maintained by the kernel. When
the kernel wishes to post a signal to a
process, it simply sets the appropriate bit.
When the kernel next decides to run the
process, it looks at the set of signal bits

UNIX Basics
and, if any are set, will start the process running using some
special code to handle the signal.

Well, you may have been confused by “when the kernel
next decides to run the process” and you have a right to be,
surely a process is running all the time? On a processor with
a single CPU, a process will run until it makes a system call,
which will be serviced by switching into the kernel. If the

system call takes some time, perhaps
reading some data from a disk, the
process is generally put to sleep until
the data is ready. When the data mat-
erializes, the process is ready to go and
can be placed in the run queue, where
it is allowed to have some more CPU
cycles. Of course, the process isn’t
aware of this sleeping time, as far as
it’s concerned it has made a system
call and had some data returned.

The hardware may also cause a
switch into kernel mode. The hardware
will interrupt the CPU when a device
completes some physical action, causing
a switch into the kernel to service the
peripheral. One device that’s always
present is a clock that ticks away at
regular intervals allowing the kernel to

share the CPU more fairly between the running processes. The
kernel can see that one process has managed to get some com-
putation done and now it’s the turn of another process to run.
So, the system is always switching in and out of kernel mode,
deciding what process is to be run next and starting that process.

Finally, just before a process is resumed at the point where
it left off, the kernel checks the signal bits and calls a special
piece of code to handle the signal rather than restarting the
process as if nothing had happened.

Default Signal Actions
The signal-handling code has a set of default actions that

are performed depending on the type of signal. For most sig-
nals, the process can also elect to provide its own signal-hand-
ling code and take whatever action the programmer sees fit.
However, most processes don’t take any special action and just
follow the standard default rules.

The first, and most common, default action makes the
process exit immediately. The signal-handling code will call
the exit system call and the process will finish. Note that
the process exits, it’s not really terminated by the system. The
exit system call takes a value and this is passed to the process
that started the command. By convention, on a normal exit,
a zero value is used to mean the successful termination of a
program. The signal code will set some bits in this returned
value, so the calling process can see that its child has died
because it received a signal. Of course, some programs don’t
care about this information. Some just inform the user. For
example, shells print out a message saying the process has died
because of a signal. Some processes depend on knowing what
has happened to one of their children and will take special

action when a nonzero value is returned.
The second default signal action causes the execution state

of the program to be dumped into a file called core and then
the process will exit as above. Of course, memory hasn’t been
“magnetic core” for some considerable time, so the name of this
file betrays its antiquity. Recent releases of 4.4BSD have tended
to use a name that relates to the original command, so if the
dump is from a program called fiona , the core dump will be
in a file named fiona.core . Using a command-specific name
helps get around the problem of core files being overwritten
by several crashes of different processes.

The execution state of the program can be useful if you’re
debugging a program or want to attempt to find out what it
was doing before it was sent the signal. Debugging programs
can use the core dump to investigate the state of the program’s
address space. Core dumps can be large, programs often have
immense address spaces that rely on the virtual memory capa-
bilities of the operating system and the host computer. To over-
come the problem of filling up disks with immense core files,
most recent versions of UNIX have limits that prevent the file
being written if it will be larger than a predefined size.

Core dumps also present a security hazard. If I can get a
core dump from the login program immediately after you
have typed your password, then I can see your password in
plain text (if I know how to use an appropriate debugger).
Again, this problem is fixed on most current UNIX systems.
One step is to prohibit anyone from obtaining a core dump
from a program that has the setuid bit set in the file where
the command lives in the file system.

You will find that core files materialize on all UNIX sys-
tems from time to time and, in general, they signal that some-
thing has failed and can be deleted. Although, if you have the
knowledge, it may be worth your while trying to deduce what
provoked the dump. On Solaris, the file command will tell
you the name of the program that was responsible for the core,
which can be useful.

The third default action for a signal is actually an inaction,
the signal is ignored. In reality, if the programmer hasn’t set up a
special signal-handling routine, then an ignored signal is simply
not posted. The fourth and final system action is to suspend the
process. Most of the documentation calls this action “stopping”
the process. I tend to resist using this term because it implies
finality. The process is only halted temporarily and “suspending”
is a more accurate term.

Using Signals
As I said, the programmer can specify that a routine in the

process should be called when the signal occurs, rather than
taking the default action. There are a number of reasons why
this is desirable, why a program may wish to trap signals.
What follows examines some possibilities and is by no means
an exhaustive list.

First, a common case: If a program creates a temporary
file, it’s nice to be able to clean up when the user wants it to
stop. Thus, the code will catch the signal, delete the file and
exit. The program is doing what the user wants–stopping,
but being tidy too.

26 SunExpert Magazine ■ September 1998

You will
find that
core files
materialize
on all UNIX
systems
from time
to time and,
in general,
they signal
that
something
has failed
and can be
deleted.

UNIX Basics
Second, if a program is interactive, an editor, for example,

you may wish to use the signal to stop the current command
in the editor rather than causing the whole program to exit,
which will lose the file you are editing. Again, the program is
doing what is natural: The shell is an interactive program and
doesn’t die when the user emits a signal from the keyboard.
The interactive program is mimicking that behavior.

Third, there are several background processes that trap
the “hang-up” signal and on its receipt will call a routine
that rereads their configuration file. The signal is acting as
a restart facility and is an example of a simple piece of inter-
process communications.

As a final example, there is a class of programs to which you
might want to send a message. A good example is a line printer
spooler, which will sit waiting for files to appear in its spooling
directory so that it may print them. It’s not very efficient to
make such a program continuously look for work. It’s more
productive to send it a message that says, “there is work now,”
and this message can be a signal. Actually, these days, many
such programs are programmed with sockets so that a datagram
is sent to tell it to spring into life and print something.

Catching Signals
To catch a signal, the programmer specifies that one of the

routines in a program is to be called when the signal occurs.
A call to the handling code is seen as an “unexpected” routine
call to the program. In modern terms, signals create simple
multithreading in the program, where there are two distinct
paths in the code sharing the same data space.

In the original UNIX systems, care had to be taken in the
data space of an application that was to continue to run after a
signal had been caught. It was possible to have races, problems
with shared data and all the evils of multithreading, but there
was no support for mutual exclusion and locking that we ex-
pect in multithreaded environments today.

The basic design of signal handling was somewhat flawed
because it was not really envisaged that signals would be used
as an IPC mechanism. When the signal-handling routine was
called, the kernel reset the action for that signal back to the
default. Usually, the first action in the handling routine was
to reestablish the handling routine. However, this left a small
window of opportunity where a signal could arrive, the routine
was called, the default action was now in force and some code
was needed to be executed to set up the handler. Another sig-
nal that arrived before the handler was reestablished could
cause the process to take the default action, rather than calling
the catching routine.

I recall spending an enormous amount of time wondering
why my line printer spooler would occasionally crash, creating
a core dump. At the time, UNIX didn’t have a spooler and so I
had written one. I never got to the bottom of the problem, and
it was years later when I realized the signals were being set back
to the default and the default for the signal I was using created
a core dump.

The problems with unreliable delivery of signals caused the
team at the University of California to develop many solutions
that appeared in successive BSD releases. The final model that

exists in most modern UNIX systems treats signals like hard-
ware interrupts to the virtual machine that is the process.
When the kernel calls the signal-handling routine for a parti-
cular signal, that signal is masked. If the signal arrives while
the handler code is being called, then it will be posted, but
the catcher routine will not be called until its first call exits
or takes action to allow the signal. The 4.4BSD signal model
was adopted by POSIX (with some changes) and forms the
basis of signal handling today.

Sending Signals
The standard terminal handler allows the user to send

three signals to all the processes attached to the terminal.
You can bind these signals to different keys using the stty

command. The first, the interrupt signal (SIGINT), is usually
bound to Control-C on most UNIX systems. The default
action for the interrupt signal
causes the running processes to
exit. The second, the quit signal
(SIGQUIT), is usually bound to
Control-\ and causes a core dump
and an exit. The quit signal is of
more use to programmers and
software developers than mortals.
The third signal (SIGTSTP) is
usually bound to Control-Z and
delivers the suspend signal, stopping
the processes from running. The ter-
minal interface can also automatically
deliver a signal telling all its processes
to die when a carrier drops, which
happens when a phone line is discon-
nected. By default, a process will exit
when it receives the SIGHUPsignal.
This signal gave rise to a UNIX
command, nohup , which starts
a user-defined command that ig-
nores the SIGHUPsignal. This
was originally used by people
who wanted to dial in, start a
background job and then disconnect the phone line, leaving
the background job running.

The kill command is used to send a signal to one or
more processes. By default, if you simply supply it with a
process ID, it will send the terminate signal (SIGTERM) to
the appropriate process. The default action for this signal
causes the process to exit. However, SIGTERMcan be caught
and ignored.

To kill a process dead, you need to send the kill signal
(SIGKILL). This signal cannot be caught or ignored and is
guaranteed to kill the process (assuming that it’s not waiting
on some system event that will never happen). You can deliv-
er the mortal blow by saying

$ kill -s SIGKILL <pid>

but this is too much typing. I prefer the older form

28 SunExpert Magazine ■ September 1998

UNIX Basics
$ kill -9 <pid>

which sends signal number 9, which happens to be SIGKILL

on my system (and probably on yours too, it’s one of those
immutable constants that we know and love). You do need to
be circumspect in your use of SIGKILL ; if the process main-
tains temporary files, then it may expect to clean up and will
do so when it is sent a SIGTERM. The usual strategy is to send
a SIGTERMand, if that fails, send a SIGKILL .

As I said above, several daemon processes are coded to use
the SIGHUPsignal to reload tables. Many modern versions of
such programs create a .pid file in some known spot on the file
system and provide a shell script that “restarts” the daemon. The
shell script reads the .pid file and sends the SIGHUPsignal.
Using ps to find the process ID and typing

$ kill -1 <pid>

works too.

Sending Signals to the Right Process
Of course, you hit Control-C on the keyboard without a

thought and see the current running foreground process exit
because it received a SIGINT signal. Actually, there is a sophis-
ticated mechanism ensuring that only the “right” process (or
processes) receives the signal.

The first UNIX systems used the notion of the “controlling
terminal” to decide which processes should receive a signal
from the keyboard. All the processes that are talking to the ter-
minal will be sent the signal. This seems reasonable, but let’s go
through things slowly and see what the implications are.

When you login to a historical UNIX system, your shell is
connected to your terminal. There’s only one process and it will
ignore the interrupt signal because shells cling to life and don’t
want to die when you type Control-C. Now you type a com-
mand name into the shell and start another process. You think
of this as the “foreground” process because the shell goes to
sleep until the command exits. In reality, you have two pro-
cesses running on the machine with equal status, but one is
waiting for the other to die. Typing Control-C will cause a
signal to be sent to both processes. The shell is still ignoring
it and the “foreground” process will exit, assuming it has taken
no special action to handle the signal. The shell is woken up
because the foreground process has died and you can type a
new command.

Next, you start a command sequence that contains several
processes connected by pipes. Again, when you type Control-
C, all the processes are sent the signal. The pipeline processes
die and the shell wakes up. This does the “right” thing.

What happens when you start the pipeline but add an am-
persand at the end of the line making a “background” process?
When you type Control-C, the signal gets sent to all the pro-
cesses and will kill your background pipeline sequence as well.
However, killing the background commands is not “correct”
behavior. When we place something in the background, we
don’t want it to die when we type Control-C, the keystroke is
supposed to be killing only the foreground process.

We need to program our shell so that when it starts a back-
ground process, that process will ignore the SIGINT signal. If
the background job consists of several processes, then all the
processes need to ignore the interrupt signal. So, now when
Control-C is typed, processes in the “background” (and the
shell) are ignoring the signal and remain running. All other
processes see the signal and will die. Again, we seem to have
what is the correct intuitive behavior.

But, how do we kill our background processes? The only
way is to use the ps command to discover their process
IDs and then use the kill command to send SIGTERM

or SIGKILL .
Well, the above state of affairs existed for some time on

UNIX until job control was implemented in the early ’80s.
Because job control was a BSD notion, and by then “System V
was considered a standard,” the mechanism was not really pick-
ed up in the System V world until quite recently.

Job control works by implementing the idea of a “process
group.” When the shell starts a command or a command se-
quence, that job is placed in a distinct process group. A single
number is retained in all the constituent processes and the
kernel is able to use that number to identify members of the
group. The shell is able to manipulate which process group has
control of the terminal by loading the group number into the
terminal interface with a special system call.

Now when you type Control-C, the SIGINT signal is only
sent to the processes in the process group currently loaded into
that terminal. As a result, the shell can define foreground pro-
cesses (those in the process group that is loaded into terminal)
and background processes (all other process groups). Back-
ground processes are not allowed to read from the terminal,
they are put to sleep if they attempt to do so. You can also
optionally make background processes wait politely to output
to the terminal should this be desirable. Job control defined a
new standard signal, usually bound to Control-Z, which temp-
orarily suspended a running process. Using a few keystrokes,
the user had the ability to control which processes were in the
foreground and which were in the background.

Job control was a big leap forward, it allowed users on ter-
minal lines to multiplex several tasks on the same screen. It’s
argued that it is of limited use today where we have the ability
to create several virtual terminals on our workstations. How-
ever, I still use job control because it’s fast and it’s easier to type
Control-Z than reach for the mouse and open a new window.

Further Reading
There’s loads of information on how signals are implement-

ed in 4.4BSD in The Design and Implementation of the 4.4BSD
Operating System, by Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels and John S. Quarterman, published by Addi-
son-Wesley Publishing Co., 1996, ISBN 0-201-54979-4. ✒

Peter Collinson runs his own UNIX consultancy, dedicated to
earning enough money to allow him to pursue his own interests:
doing whatever, whenever, wherever… He writes, teaches, con-
sults and programs using Solaris running on a SPARCstation 2.
Email: pc@cpg.com.

30 SunExpert Magazine ■ September 1998

	Signals
	Default Signal Actions
	Using Signals
	Catching Signals
	Sending Signals
	Sending Signals to the Right Process
	Further Reading

